On the independence number of random graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the b-Independence Number of Sparse Random Graphs

Let graph G = (V,E) and integer b ≥ 1 be given. A set S ⊆ V is said to be b-independent if u, v ∈ S implies dG(u, v) > b where dG(u, v) is the shortest distance between u and v in G. The b-independence number αb(G) is the size of the largest b-independent subset of G. When b = 1 this reduces to the standard definition of independence number. We study this parameter in relation to the random gra...

متن کامل

On The Independence Number Of Random Interval Graphs

A random interval graph of order n is generated by picking 2n numbers X 1 : : : X 2n independently from the uniform distribution on 0; 1] and considering the collection of n intervals with extremities X 2i?1 and X 2i for i 2 f1;:::ng. The graph vertices correspond to intervals. Two vertices are connected if the corresponding intervals intersect. This paper characterizes the uctuations of the in...

متن کامل

On the Independence Number of Random Cubic Graphs

We show that as n —> oo, the independence number c*(G), for almost all 3-regular graphs G on n vertices, is at least (61og(3/2) — 2 — e)n, for any constant e > 0. We prove this by analyzing a greedy algorithm for finding independent sets.

متن کامل

On the k-independence number in graphs

For an integer k ≥ 1 and a graph G = (V,E), a subset S of V is kindependent if every vertex in S has at most k − 1 neighbors in S. The k-independent number βk(G) is the maximum cardinality of a kindependent set of G. In this work, we study relations between βk(G), βj(G) and the domination number γ(G) in a graph G where 1 ≤ j < k. Also we give some characterizations of extremal graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1990

ISSN: 0012-365X

DOI: 10.1016/0012-365x(90)90149-c